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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2939

OPTIMUM CONTROLLERS FOR LINEAR CLOSED-LOOP SYSTEMS

By Aaron S. Boksenbom, David Novik
and Herbert Heppler

SUMMARY

An analysis for optimum controllers of general, linear, time-
invariant multiloop systems is presented. Optimization is based on
minimizing mean-square or integral-square errors for either stationary
statistical or transient inputs, with limits and constraints of mean-
or integral-square form. General representations of controller char-
acteristics, stable process characteristics, and error relations are
used. A method is shown of assuring stability of the multiloop system
during the optimization process and casting the multiloop controlled
system into an equivalent open loop so that the methods of optimum fil-

ter theory can be used. General solutions are obtained for four special
cases. Two examples for speed control of a turbojet engine illustrate
the methods developed in this report. The data for a controlled turbo-
jet engine were in substantial agreement with the theoretical results.

INTRODUCTION

One of the fundamental functions of controllers is the reduction
of certain variables, called errors, to small values. This must be
accomplished with the dynamical nature of the system, the difficulty
of accurate measurement, the power requirements to manipulate valves,
and so forth, the random effects at the inputs, and the general
effects of noise taken into consideration. At various stages in the
design of an over-all controlled system, the question arises as to
what computations the controller should make to minimize the errors.

In this report, the problem of optimizing this computational aspect
of the controller is analyzed. Linear systems are assumed throughout.
Optimization is considered under either transient or statistical inputs
and disturbances and is based on the minimization of mean-square errors
or integral-square errors. Constraints and limits are included as mean-
square or integral-square values.
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Most investigations in this field optimize the controlled system
by adjusting certain parameters of an otherwise fixed system. In this

report the more general approach of optimizing the system by adjusting
the entire frequency-response characteristics of the controllers is
used. This general approach was first developed in reference 1 for
the design of filters, and a corresponding development is presented
herein for a closed-multiloop controlled system. New problems of
structural stability and physical realizability arise in the closed-
loop cases. In addition, necessary constraints and limits are included
in this analysis.

The problem of optimizing the computational aspect of the control-
ler is first reduced to a standard form by generalizing the frequency-
response characteristics of both the process to be controlled and the
controller, the conditions of stability, and the specifications on
errors, constraints, and limits. The general solution for the optimum
controllers giving an absolute minimization of errors is derived. In
addition, the expressions for the minimum errors, and the additional
errors suffered when nonoptimum controllers are used, are shown.

It is expected that the results of this analysis, conducted at
the NACA Lewis laboratory, can be used as a basis for controller design,
as a standard under which controllers can be evaluated, or as a possible
basis of specifications on controller dynamics. Applications of the
results of this analysis to several examples of controlling gas turbine

engines are shown.

SYMBOLS

The following symbols are used in this report:

a engine or fuel servo dead time

b,c constants for describing spectral densities of inputs

C general linear operators representing controller

E stable linear operators representing engine or process

e errors to be minimized by control and constrained variables

e* errors resulting from nonoptimum controller

F)G stable linear operators representing parts of controller

H general linear operators giving response of errors
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K loop gain

R arbitrary stable linear operators

t time

w inputs and disturbances affecting errors

x manipulated variables
CD

y inputs to controller

z inputs and disturbances affecting y's

8F arbitrary stable linear operators

X Lagrangian multiplier

a ,r engine time constants

Tl integral time constant

wfrequency

Subscripts:

Jn.,r,s.,v summation indices

opt optimum

Superscripts:

complex conjugate

expected value or integral

Correlation function notation:

For statistical inputs,

(wjzv) = (vWj) = zv(t)wj(t + u) F-U du

For transient inputs,
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(wJ5v) - wj(t) &-iWt dt Zv(U) +iwu du

(jz) = (w v )

Matrix notation:

Ejk indicates element of jth row, kth column of matrix E

ANALYSIS

Scope of Analysis

The scope of the analysis is summarized as follows:

1. Time-invariant linear systems are assumed throughout.

2. The process to be controlled is inherently stable, with one
variable to be manipulated by the controller.

3. Optimization is to be realized for either transient or station-
ary random inputs.

4. Optimization is based on minimizing mean-square or integral-
square errors. The constraints and limits of the system are included
by constraining the mean-square or integral-square values of the vari-
ables involved.

5. Complete freedom in computation is assumed for the controller.

The same formal equations in the time domain are obtained for the
nonstationary, time-varying cases as for the stationary, time-invariant
cases (ref. 2 ; but, even for the open-loop filter problem, the equa-
tions for the time-varying cases can be solved only by numerical means.
Extension of the analysis of this report to the time-varying cases would
require such techniques as those in reference 2. The linear assumptions
do not completely preclude application of the methods of this report to
nonlinear systems. Many nonlinearities can be handled so as to allow
linear techniques without omitting the essential nature of the nonline-
arity (refs. 3 and 4).

When the process to be controlled is inherently unstable, the
techniques of preserving stability of the closed-loop system are more
involved and these rather uncommon cases are not treated herein. The
extension of this analysis to cases having several manipulated variables
follows in a straightforward manner, but the final equations to be
solved are more complex. The fundamental development of these cases
is shown in the appendix.
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The optimization problem for transient inputs is the same as that
for statistical inputs (ref. 5) if mean squares are replaced by integral
squares and if spectral densities are replaced by products of Fourier
transforms, as shown in the list of symbols. The analysis which follows
was guided by the desire to keep the systems studied and the problems
resolved as general as possible so that wide applications may be made
of the results. In order to utilize available open-loop theory, it was
necessary to determine an open loop equivalent to the actual closed
loops which would still assure structural stability of the actual sys-
tem during the optimization procedure. Techniques of accomplishing
this end were found for those cases of stable process characteristics.

Characterization of Process

The general form of the systems considered is shown in figure 1.
The time-invariant linear process to be controlled has certain inputs
x (in this case only one, such as a fuel-valve position signal) which
can be and are chosen to be manipulated by the controller. There are
a certain number of outputs y (such as measured engine speed, meas-
ured engine speed error, throttle position, altitude pressure,, etc.)

which can be and are chosen to be used by the controller. Each output
is affected by transient and statistical disturbances and inputs z of
altitude, air speed, throttle position, and so forth, and by the manipu-
lated variable through a linear operator E. In general, E would be a
rectangular array of operators, but for the case of one manipulated
variable E is a column of operators. The general form of the process
to be controlled can be written operationally as

yj = zj + Ej , x (1)

This form follows directly from one method of obtaining these char-
acteristics. If x is held constant, measured y gives the nature of
z. If x is varied sinusoidally, the harmonic analysis over a large
number of cycles of measured y filters out any effects of z because
the harmonic content at any one frequency of either a transient or sta-

tistical z is relatively small. This can be seen from the fcllowing
analysis:

If

x(t) =Re (eiwt) t>0

=0 t<0

then

y(t) = z(t) + Re [E(i) ei as t--
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internal disturbances of such structures can be considered as applied
to the input or output as small disturbances, the proper discussion of
stability should deal only with stable structures.

The controller operational equation should therefore be written

x Fj • yj + G • x (3)

~j
0

where F and G represent stable structures. The only new modes of

oscillation in the system in addition to the stable modes generated
by E, F, and G are those represented by the response

1 .This criterion of stability can be seen by deriving
1 - G - FjE

the responses of all variables in the closed-loop system to all possible
disturbances. Each response will have the preceding factor multiplied
by E, F, or G, or by the sum of the products of these operators. It
can also be shown that no loss of generality is caused by allowing

G = -ZFjEj (4)

in which case stability of the entire closed-loop system is assured.
The number of functions F still to be determined is the same as the
original number of unknown functions C of equation (2).

There are alternative ways of obtaining the same over-all opera-
tion expressed by equations (2) or (3), some of which may be unstable.
One general method, always stable, is shown by figure 2, in which the
Fj's are arbitrary stable structures.

Combining equations (1), (3), and (4) gives

x = Fj . zj (5)

The original closed-loop system of figure 1 is now equivalent to the
open-loop system of figure 3, and this open-loop system is now compar-
able with the systems of reference 1.
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An expression for Cj of equation (2) is

1+ F (5a)
j1 + Eb EjF

a)
Specifications on Controller

The errors to be minimized by the controller are characterized in
the same way as the y's as they have a controlled and an uncontrolled

part. The specifications are written

Xj e = a minimum (6)
J

where

ej = wj + Hj • x (7)

and H is any general linear operator.

The X multiplier technique is used to allow additional degrees
of freedom whenever the optimum values of the errors are not independent
or when constraints of mean-square form are to be imposed. The X's
may then appear as parameters of the controller and are adjusted to give

a compromise among the various dependent errors or to set the mean-
square values of the constrained variables.

Minimization of Errors

From equations (7) and (5), the expressions for the quantities to
be minimized or constrained are

ej = wj + HjZFn zn

n

and
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and

L+TL+T

& y(t)dt = z(t)dt + E(i )

where

T= 21(k (k is an integer)

and

The first term on the right side of the preceding equation
approaches zero as k-o for either a transient or statistical z,
and

L+T-
L -t y(t)dt = E(im) for L, k-.

Characterization of Controllers

The controller to be designed is to operate on the y's to give
x according to the operational equation

x = y CJ • yj (2)

As the optimization of only the computational aspect of the controller
will be considered, the y's and the x are outputs and input, respec-
tively, which isolate the engine or process to be controlled and which
can be freely used in computation.

The Cts of equation (2) are arbitrary linear operators which
need only to keep the closed-loop system stable. But, in order to
assure stability, the responses of all variables in the system to all
possible disturbances must be considered. These include variables and
disturbances internal to the C and E boxes. Because arbitrary
linear operators can be built up from stable structures and the small
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Xjj ZXiJ7 d[Z H F (zvwj) + Z j~v(_vwj) +
j j v

IHjl2FvFn(zvZ-n) + (wjwj] (8)

v n

If the symbol F is used for the optimum system resulting in
error e and the symbol F + 6F is used for any other system resulting
in error e*, then

),e*j (j Jj 1 opt ZX "j +bZ[Ij_

Hj 12Fn(Zn + X j 1 0§dL z Fv LHj(zvwj)+ ZIHj 2n(Znz +
n jiv v n

Xj d riZ :, Hj 1 2 (zvn 8Fv75-,n

v n

The first two terms of the right-hand side of the preceding equa-
tion are equal because the integrands are merely conjugate. The third
term is nonnegative as it is equal to the mean-square error resulting
when F is F and w = 0. Thus the necessary and sufficient condi-
tion for an absolute minimum is that

j &D Zd_) Zv[ - jZ-W) + ntHj2Fn(zn-v = 0 (9)

anv dthn

and then
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Z Xe* j ) d kn opt

j v(n
(10)

Because bFv  is any arbitrary but structurally stable system,

equation (9) reduces to

Z xj- j ( zvwj) + X (Z JH i2)Z Fn(ZnZv) = (11)

jn

for all values of v for which there are a corresponding Fv and Cv;

and where Rv  represents any arbitrary stable structure.

Cases in Which z's Are Independent

A general solution of equation (11) has been found only for the
case in which the z's are independent ((znzv) is a diagonal matrix).

In this case the general solution is

Fv= -vl (12)
MZV

where

)"Hj (Zvwj)

11V

Xj jIHj 2 = IM12

(zv) =IZVl
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The operators M and Zv represent minimum phase structures, and

Av = Av, 1 + Av, 2 where AV, 1 and Av, 2 represent stable structures.

This solution follows the general pattern of reference 1 in the fre-
quency domain. The determination of M and Zv  is the factorization

problem of reference 1. The function Av. 1  can be obtained formally

by the following equation:

OD imt

Avl(i = S dt Av(iU)

From equation (8), a general expression for the minimum error gives

(Z i Je2 opt -kj dn(wjwj) d 2d Av,,l12 (13)

From equation (10), the difference between nonoptimum and optimum
errors is

X Xi e~ - (4: j~op =IJ~ dlDIMbFvZLv,2  (14)

EXAMPLES

Example 1

The first example taken from a problem in the control of a turbo-
jet engine is illustrated in figure 4. The engine-speed error is fed

into the controller and a fuel-valve position signal is varied by the
controller. Linearized engine characteristics are represented by a
lag (ref. 6), and the fuel servo is considered as having only dead time
(the output reproduces the input a seconds later).

Then

el = yl = engine speed error

vI = zI = negative of speed setting
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E -aiw
1 = H 1 = T + iw

x = signal to fuel servo

From equation (12), since IM12 = 1i

j+ riw ID

1/2

Mi + i

then

A, = Xl1/2 raiZl

Letting

(ZlZl) = C

lb + i 2

then

C

b+i~o

A1 = + u

Al~ ~ ~ 1/ X,1/aiuio

1 JiGo (it -atJ/2c ai
A1 .,1  dt b b+iu du

J -iLot at X 1 /2 c -b(t+a)

,11/2 c C-ab

b + im

and

Fl = _-.ab( + iw)
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From equation (5a)

- ab i
1 -1 -abe-aiD

From equation (13)

2
(e2 )p ( - 2ab)e~~ l opt = 2b(i-

O
(D

For the controller action derived, the responses of speed and x to
speed setting are

Speed = g-ab.-aiw (speed setting)

and

x = '-ab(l + -riw) (speed setting)

The order property and thus the derivative action of the preceding equa-
tion indicates the large fuel flow and temperature variations encoun-
tered with the derived controller because no limit or constraint was
placed on these variables.

Example 2

The second example in which the same control problem as in exam-
ple 1 is analyzed with a constraint on the mean- or integral-square
turbine temperature variation and in which the servo lag has been
omitted is illustrated in figure 5. For this example,

el =Y = engine speed error

w= zI = negative of speed set

e2 = turbine temperature

w2 = 0

1
H1 = E1 = 1 + iw

1 + iW

H2  1 + ai'm

x = signal to fuel servo
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From equation (12), since IM12 = X 1 + X2 Ji + a2j

11 + -riw2

(X + X2) 1/2 + X21/2oi
m X+ 2  + 2  aiww

then

(x1 + X)1/2 - 21/2o

Letting

c2

(z1 1) - lb + iw 2

then

c

Al:(b + iw)[(kl + X22  - 2I/

1I,1 (b + i) [(Xl + X2)1/2 + X21/2b]

and

Fl X, i(i + -ri)

From equation (5a)

-Xj (i + rj)

From equation (13)
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Xj ____ Kl2 [)21 + b)l/2-k1/2ab](e 2) opt - 2b F( X1 + 2)1/2 + 21/2ab] 2  (15)

The responses of speed and x to speed setting are

Speed = X1  .(speed setting)
X d2 1 2 +X/cb][(X + X2) l + l%'/ 2ai
1 + X22X

x = - F• (speed setting)

In all the preceding equations, only the ratio of the two X's is
effective. This ratio can now be set by evaluating the individual
errors that make up equation (15). Choosing the ratio of the X's
involves a compromise between temperature and speed errors, as these
quantities vary oppositely to the ratio of X's.

EXPERIMENTAL RESULTS

An axial-flow turbojet engine was operated on a sea-level static
test stand to obtain some verification of the analysis. Figure 4 of
example 1 describes the system. The frequency response of engine speed
to fuel pressure obtained by harmonic analysis of transient data is
shown in figure 6. An approximation to this data gave r = 1.6 seconds
and a = 0.163 second.

A proportional-plus-integral controller of the form

C =-KI + --- i] was used over a range of K's (loop gain) from

3.5 to 11 and a range of Tl's from 1 to 2.5 seconds. The integral-

square percentage error was obtained for each controller setting from
the response to a step in speed setting, and the results are shown in
figure 7.

The smallest error (of magnitude 0.41 sec) was obtained at K = 9.3
and T1 =-1.6 seconds.

The results of example 1 with b = 0 (step input) gave

Copt = -( i 
1 - 6 -aiw
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1 -aimWt - a iu i 2 • ( 1 ) I  aim1

Witha p -2 + + The small deriv-
ai'Capt a-

2

ative action J.+ a indicated was not used. For t 1.6 seconds

and a = 0.163 second, the preceding equation indicates

K = 1.6 - 982Kopt a 0.163

CQ

Iopt = r = 1.6 seconds

which is in substantial agreement with the data of figure 7.

SUMMARY OF RESULTS

An analysis was developed for the optimum controllers of general
linear closed-multiloop systems under either stationary statistical or
transient inputs to minimize mean-square or integral-square errors.
General solutions were obtained for the case of independent inputs and
one manipulated variable. Several examples of this case were shown
for the speed control of a turbojet engine. Experimental data from a
controlled axial-flow turbojet engine were in substantial agreement
with the theoretical results.

For the general multiloop systems of any number of manipulated
variables, general solutions, which are shown in the appendix, were
obtained for four special cases.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, February 16, 1953
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APPENDIX - GENERAL MULTILOOP SYSTEMS

The scope of this analysis is the same as for the preceding analy-
sis except that it includes any number of manipulated variables.

Characterization of system. - The general form of the system to be
considered is shown in figure 8. The general form of the process to be
controlled is written as follows in matrix notation:

y=z+E x (16)

The controller to be designed is to operate on the y's in order to
give the x's according to the operational equation

x =C • y (17)

or

x=F y+ G. x (18)

where every element of the F and G matrices represents stable
structures. The new modes of oscillation generated by the closed loops
are represented by the responses

[i - G - ]-i

No loss in generality is caused by allowing

G = - FE (19)

and stability is now assured. There are alternate ways of building the
same over-all operation expressed by equation (17) or (18), some of
which may be unstable. One definitely stable method is shown in
figure 9.

Combining equations (16), (18), and (19) gives

x= F z (20)

which represents an equivalent open-loop system. An expression for the
C of equation (17) is

C = (1 + FE)-1 F (20a)

Specifications on controller. - The errors and constraints are
characterized in the same way as y. The specifications are thus
written
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Z Xej2 = a minimum (21)

where

e x (22)

and the elements of H are general linear operators.

Minimization of errors. - From equations (22) and (20), the expres-
sion for the quantities to be minimized or constrained is

e = w + HF • z

and

Xjej 2 = X j d i (HF)jv(zvwj) + Z ()j(Zvwj) +
V

j (EF)jv(l)jn(zv n) + (wwj]

V n

If the symbol F is used for the optimum system resulting in
error e and the symbol F + bF is used for any other system resulting
in error e*, then

-e* - jej 2 j d (--F)jv ()ZvWj) + 2 (HF)jn(znzv +

opt v n

j dw (HbF)jv [(zvWj) + Z (i) jn(Znzv +

Zx vJ j I d v n (S~vH-Fjvn
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The first two terms of the right side of the preceding equation
are equal since the integrands are merely conjugate. The third term
is nonnegative as it is equal to the mean-square error resulting when
F is 6F and w = 0. Thus the necessary and sufficient condition
for an absolute minimum is that

X j U Z (HJZ) [(TvWj) + nI ('F)jn(Znv] = 0 (24)

and then

X I d L (F)jv( )jnw(ZvZn)kj~2 k opt v n ,YFjzvn:

(25)

Because each element of the 5F matrix is any arbitrary but structur-
ally stable system, equation (24) reduces to

Z Xj Rjr [Zvwj) + n (HF)jn(znv) =rv (26)

for all values of r and v running over the rows and columns of F,

and where every element of R represents any arbitrary stable structure.

Equation (26) in matrix symbols becomes

H'XHFZ + H'XW = T (27)

where HI indicates the transpose of H and the matrices Z. W, and
X are

Zjv = (zjzv)

Wjv = (wj-7v)

diagonal (kl, X2, X, . . .)

The general solution of equation (27) or (26) has not been found. The
factorization problem now seems to be that of factoring the Hermitian
matrices (ff'KH) and Z. Equation (27) has been solved for certain
special cases.
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Case 1. - In the first case, H is a column matrix and the z's
are independent. This is the case solved herein (eq. (12)) in which
only the corresponding row of F (and C) is determined. It is noted
that, in general, if any row of C vanishes, then the corresponding
row of F likewise vanishes.

Case 2. - In the second case, H is a diagonal matrix and the z's
are independent. The general solution for this case is

SAvr, 1 (28)
HrZv

where

Err (ZvWr)

HrZv

IHrrI2 = jHr 2

(zvv ) = IZV12

The functions Hr and Zv are minimum phase structures and

Avr = -vrl + Avr,2 where Avr,l and ir,2 are stable structures.

Case 3. - Every element of H and H-1  is stable and the z's
are independent in the third case. The solution for this case is

(H- 1 )rsAsv, 1

where

(Wsiv)
Asv -

v

Zv is defined in Case 2, and Asv is to be separated into the two

parts Asvl + Asv,2 as in Case 2.

Case 4. - In the fourth case, HJk = BDjMjk and the z's are

independent where BB = DjDj = 1 and every element of M and M- 1  is

stable. The solution for this case is
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Frv (M-l)rsAsvl

s

where

A D- (w 5 _Z)DO~sv

Here Zv is defined in Case 2, and Asv is to be separated into the

two parts Asv,l + Asv,2 as in Case 2.
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Manipulated C, C2  Controller

variable x

Engine, servo- E l
motors,
instru- z2

2Y2Inputs to controller
Disturbances and inputs

H2 e2 Errors to be
minimized
by controlH3 w e3l

Figure 1. - General linear closed-loop controlled system; one
manipulated variable. Circle indicates operation of addition.

F]

G C Controller

Manipulated -- F2

variable __ Zl

Engine, servo-
instrunts, E 

Inputs to controller

etc.

Disturbances and inputs

H2 _ 04 2b e 2 Errors to be minimized
by control

H3  e

Figure 2. - Representation of general linear controlled system
using only stable boxes E, F, and G; one manipulated vari-

able; stable if G - F

a
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ManipulatedF

0) 

variable 
X IZ

Engines, servo-
motors, E1 l. 

Yl

instruments,
etc. z

Disturbances and
Hi 

el[W inputs

w2 |Errors to be minimized
H2 e2} by control

Figure 3. - Open-loop system equivalent to closed-

loop system of figure 2 when G - EF.j,

J

C ControllerFuel servo x

signalw = z, sNeg
a t iv

e of

I I i i peed setting

Engine, Speed error
servo, ) Speed y 1 y= 6
etc. E i

Figure 4. - Illustration of example 1, speed con-
trol of turbojet engine.

Fuel servo C Controller

Wl = Z s:
e a t iv e of

Sn1in p |Speed errori + i (4 Sp e Y'I 
=  el

Engine w2= 0

1ia em 6t Temperature

Temperature e2 variation

Figure 5. - Illustration of example 2, speed control of turbo-

jet engine with temperature variation constrained.
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1.4 Integral time
constant,

sec
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A 2.5

I
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Figure 7. -Integral-square errors of controlled axial-flow turbojet engine for
range of loop gains and integral time constants.
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